MASSACHUSETTS INSTITUTE OF TECHNOLOGY

16.09 Spring 2023
Recitation 1 1/7/2023

COMBINATORICS: A REVIEW

We will use the following notation

enl=nxn—-1)x(n—-2)x..x1

* (1) =aCr = r!(?fir)!

. ( n ) _ n!
1T ... Tk rilral..rg!

_ _nl
* ol = (n—r)!

1 PERMUTATIONS

Q: How many ways can you order (or permute) n distinct items?

A: An ordering or permutation of n items assigns a unique position in the set
{1, ...,n} to each of the n items. Arranging the items from left to right based on
these positions results in a particular permutation.

To count the number of permutations, note that for the first item, we have n
possible positions that it can be assigned. For the second item, we have n — 1
possible positions that it can be assigned, since we have already assigned one
position to the first item. Repeating this argument & times, the kth item can be
assigned (n — k + 1) positions, since the k& — 1 items ahead of it have already
been assigned unique positions which cannot be used again. Continuing this line
of reasoning, we conclude that the total number of assignments possible, which
is also the number of permutations, is simply n X (n—1) x (n—2) x...x 1 = nl.

We can generalize this result to count the number of ways to choose and
uniquely order 7 items from a set of n distinct objects.

Lemma 1. The number of ways to choose and uniquely order r items from
a set of n distinct objects is given by

N n!

b (n—r)!

=nxn—-1)x..x(n—-r+1).




In the discussion above, we have implicitly assumed that once an object is
chosen from the set, it cannot be chosen again, since the r chosen items are
distinct. This is usually referred to as picking without replacement. Another
way to chose or sample items from a set of n items is to allow items to be picked
repeatedly. This is referred to as picking with replacement.

Lemma 2. The number of ways to permute r items with replacement from
a set of n distinct items is given by n".

Permutations with replacement are rather straigthforward, since for every pick,
you always have n available choices to be made.

Q: What if the n items are not distinct? How many ways can one order a set
of n items consisting of k groups, where group ¢ has r; identical and mutually
interchangeable items?

A: If all the items were distinct, we know that there are n! possible orderings.
Clearly, n! is an overcount when some of the items are not distinct. Note that for
each such ordering, if we just consider the items belonging to group 1, they can
be freely exchanged with each other and the new resulting ordering will look the
same, since the objects are identical. Since we can permute the items in group
1 in 1! ways, we are overcounting the number of orderings by a factor of rq!.
Repeating the argument for every group of identical objects, we conclude that
the number of orderings is given by

n N n!
LTy ... T rilrol gl

2 COMBINATIONS

Now, we are interested the number of ways to choose r items from a set of n
distinct items, without any regard for their relative ordering. We already know
that the number of ways to choose these r items while taking their relative order
into account is ,P,. Further, the total number of permutations for a given choice
of  items is simply r!. So, when we take ordering into acccount, we are counting
r! permutations for each unique set of r items chosen from the original n. This
implies the following result.



Lemma 3. The number of ways to choose r distinct items from a set of n
distinct items is given by

[I>
s

3

3

nCr

As with the discussion on permutations, we have implicitly assumed that
once an object is chosen from the set, it cannot be chosen again, since the r
chosen items are distinct. The following result considers combinations with
replacement.

Lemma 4. The number of ways to choose r items with replacement from a

set of n distinct items is given by ("+:_1).

The proof for this result is a bit more involved. It is essentially equivalent to
Exercise 2.2 below, so we will discuss it once we solve that exercise.

3 EXERCISES

Exercise 1 (Binomial Theorem). Provide combinatorial arguments for the fol-
lowing.

1. Show that the coefficient of " in (1 + x)™ is given by (7').

2. Show the identity
n
3 (”) o,
r=0 "
Solution:

1. Write (14 z)™ as the product of n monomials (1+z)(1+z)...(14+z). In
the expansion, the term z" will appear if the = term from r of the (1 + x)
is chosen and the 1 term from n — 7 of the (1 + z) is chosen. The total
number of such x" terms is equal to the number of ways to choose r out
of n objects, which in turn is (7).

2. One way to prove this result is to simply set x = 1 and use the result
from part 1. A combinatorial proof, however, involves interpreting the



summation on the LHS as the total number of subsets that can be created
from a set of n objects. This is because we are simply counting the number
of subsets containing exactly r objects and then summing over all possible
values of r. Given a subset and any particular element in the set, there
are only two possibilities - it could either belong to the subset or not.
Thus, an alternative way to calculate the total number of subsets is to
simply multiply the possibilities for each element of the set. This leads to
2 X 2 X ... x 2 =2", This completes the proof.

Exercise 2 (Sums of Integers).

1. Count the number of positive integer solutions to the following equation
1+ x2.... + T = MN.

In other words, find all possible solutions of the form x; > 1,2, €
Z,¥k € {1, ...,r} such that they sum up to n.

2. Now, count the number of non-negative integer solutions to the equation
1+ x2.... + T, = N.

In other words, find all possible solutions of the form z; > 0,z €
Z,Nk € {1, ...,r} such that they sum up to n.

Solution:

1. To solve this problem, first write down n 1s.
11 .1

Any valid solution (x1, ..., ,.) can be represented by adding (r — 1) mark-
ers in the sequence above

1 1[1 1 1[1....1[1 1

The number of ones up to the first marker represent x;, the number of
ones between the first and second marker represent 2 and so on. The
number of ways in which r — 1 markers can be inserted into n — 1 spaces

between the n ones is given by (::11)



2. The solution to this problem is essentially the same as the previous part.
Define y; = x; + 1,Vi. Then, we are back to solving a problem of the
form solved in part 1, however, the equaion we want to find solutions for
becomes

Y1 t+y2.... +yr =n—+r.

The number of solutions for this system with the constraint y; > 1,Vi > 1
is given by ("jﬁ;l)
Now, going back to combinations with replacement, let’s represent the

number of times item ¢ gets picked by the variable x;. Then
r1+x0o+...+xH =T

and z; > 0, Vi. Using the result above, the number of solutions to this is

simply ("*"71). This is equal to ("*"~") since (') = (,",)-

r

Exercise 3 (Texas Hold’em). A hand in poker is a set of five distinct cards
pulled from a standard deck of 52 cards.

1. A straight flush involves 5 consecutive cards of the same suit. Count the
total number of straight flushes possible. Remember to subtract royal
flushes, i.e. the case when the 5 consecutive cards are A, K, J, Q, 10.

2. A three of a kind involves 3 cards with the same rank and 2 cards with
other different ranks. Count the total number of three of a kind hands
possible. Remember to avoid counting full houses which are three of a
kind and one pair.

Solution:

1. To have a straight flush the hand must consist of all five cards being of the
same suit and in numerical order. There are 10 possible sequences: A — 5,
2-6,... ,9-K, and 10 — A. However, we remove the last one, since it
is a royal flush. Since there are 4 suits, then the number of straight flushes
possible is just 9 * 4 = 36, plus the highest four (each a straight flush 10 —
A of one of the four suits) being royal flushes.

2. There are 13 ranks in total. Given a rank, there are 4 cards, out of which
we need to choose 3. Discarding the cards with this rank, we are left with
48 cards. The first card can be chosen in 48 ways, the second can be
chosen in 44 ways, since they must be of different ranks. Further, since
ordering is irrelevant, we are overcounting by a factor of 2. This gives us

the final count (113) (g) 482& = 54912.
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Experiment: activity whose outcome is subject to uncertainty.

Sample space: denoted by S, collection of all outcomes of an experiment.
Events: A collection of outcomes, i.e. a subset of S.

Mutually Exclusive Events: Two events A and B are disjoint or mutually ex-
clusive if AN B = ¢.

Axioms: Probabilities map events to numbers in the set [0, 1]. More formally,
they must satisfy the following axioms.

1. P(A) > 0, for any event A.
2. P(S)=1

3. P(A; U AU ....) = > 72, P(A;) for any collection of disjoint (mutually
exclusive) events Ay, Ao, ....

Conditional Probability: The conditional probability that an event A occured,
given that another event B occured is defined as

a P(AN B)

P(AIB) £

assuming P(B) > 0.
Independence: Two events A and B are independent if P(ANB) = P(A)P(B).
Further, if P(B) > 0, then we also get that P(A|B) = P(A).

For a collection of events Ay, ..., A, to be independent, the following must
hold for every subset of events P(A4;,, Ai,, ..., A;, ) = P(A4;;) x ... x P(A4;,).

2 Exercises

Exercise 1 (On Sets). Consider a sample space S with three events A, B and
C.

1. Write a set theoretic expression for the event that contains all outcomes
only in A but not in B or C, i.e. A occurs but B and C do not occur.



2. Suppose B C A. Using only the axioms of probability, show that P(B) <
P(A).

3. Is it possible that AN B # ¢, BNC # ¢ and C N A # ¢ and yet
AN BNC = ¢? Can you give an example that involves picking a card
from a deck?

4. If A, B, C is a collection of independent events then A is independent of
BNnC.

5. If A and B are independent, show that A° and B¢ are independent as well.
Solution:
1. The set AN (B U C)° or alternatively, A N (B¢ N C°).

2. Since B C A, we can write A as the union of two disjoint sets A = B U
(ANB°¢). Using the third axiom, we then know that P(A) = P(B)+P(AN
B€). However, P(AN B¢) > 0 from the first axiom. Thus, P(A) > P(B).

3. Yes, consider the experiment to be that you pick one card at random out
of a standard 52 card deck. Define the event A to be that the card is red,
define the event B to be that the card is a number, and defined C to be the
event that the card is either a black 4 or a red King. Clearly, A, B and C
satisfy the required conditions.

4. For three events to be independent together, we need P(ANB) = P(A)P(B),
P(BNC)=PB)P(C),P(ANC)=P(C)P(A),andP(ANBNC) =
P(A)P(B)P(C).

Using these, we can write P(AN(BNC)) = P(ANBNC) = P(A)P(B)P(C)
P(A)P(B N C). This proves the required statement.

5. Since A and B are independent, we know that P(A N B) = P(A)P(B).
Using this, we will prove a similar statement for the complements.

P(A° N B) = P((AU B)°)
=1-P(AUB)

—1- (IP(A) +P(B) — P(AN B))

—1- <IP’(A) +P(B) — IP’(A)IP(B))

= (1 -P(A))(1 - P(B)) = P(A)P(B").



Exercise 2 (Counting Strikes Again).

1.

Consider the n integers 1, 2, ..., n. Alice picks k integers from this set, one
after the other and uniformly at random without replacement. What is the
probability that the sequence of integers picked by Alice is in increasing
order?

We toss a biased coin n times. The probability of it turning up heads is p,
and each coin toss is independent of other coin tosses.

(a) What'’s the probability that there were k heads in total?

(b) Suppose you were told that k tosses ended up heads. Find the coin
bias p* € [0,1] that maximizes the probability that there were k
heads out of n tosses.

This estimate of p is more formally known as the maximum likeli-
hood estimate.

Solution:

1.

2.

Note that Alice picks each k sized permutation from the set {1,2,...,n}
with equal probability. The total number of these permutations is ,P.
We are only interested in permutations that are in increasing order. For
every k sized subset , there is only one permutation that is in creasing
order. There are a total of (Z) subsets of size k. Thus, there are (Z)
permutations that are in increasing order. The probability of interest is

() _ 1

then simply B TR

An alternative way to come to the same conclusion is to realize that we are
only interested in picking one out of the k! permutations for any choice
of k numbers, so the probability that we pick the numbers in increasing
order is simply %

(a) To get k heads in total, we need to choose which k coin tosses turn
up heads. We can do this in (}}) ways. Once we have chosen the
specific tosses that are heads, the probability of this particular se-
quence occurring is simply p¥ (1 —p)"~*. Summing across all possi-
ble choices of £ sized subsets of 1, ..., n, we get the total probability
tobe (})pk(1 —p)n*

(b) We want to solve the following optimization -

* n k . n—=k
y = (1) o)



Differentiating the objective with respect to p and setting it to zero
we get

f( ) a-ort - wen (D)t tt <o

= k(1—p)=(n—k)p
k
=p=—.
n
Thus, the maximum occurs at p* = %, which, at least intuitively

would also have been our best guess of p if someone told us that a
coin tossed n times resulted in & heads.
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Random Variables: A random variable X maps events (which are a collection
of outcomes in the sample space) to real numbers. A discrete random variable
takes at most a countably infinite number of values.

Example 1: Suppose X is a random variable that takes a value n with proba-
bility 27" for all positive integers n. While the range of this random variable is
infinite, it is countable, so X is a discrete random variable.

Example 2: Suppose you generate a random variable X by picking real numbers
uniformly at random between 0 and 1. Clearly, the range of X is the entire
interval [0, 1] so it is not a discrete random variable.

PMF: The probability mass function or pmf of a discrete random variable is
simply the probability that it takes a particular value, i.e. P(X = x). It is also
denoted by p(x) or px (z). The pmf satisfies ) p(z) = 1.

Support: The support of a discrete random variable is the set of values x for
which there is a positive probability mass, i.e. p(z) > 0.

CDF: The cumulative distribution function of a random variable X is defined as
the probability that it is less than or equal to a specified value z, i.e. P(X < x).
It is denoted by Fx (x).

Expectation: Suppose that a discrete random variable X has support over the
set X. Then, the expectation of X is defined as

E[X] = Z xp(z).

reX
Moments: The rth moment of X is defined as

E[X"] £ Z z"p(z).
reX
Variance: The variance of X is defined as
var(X) £ E[(X — E[X])?] = E[X?] - (E[X])*.
MGF: The moment generating function (mgf) of X is defined as

Mx(t) £ E[e"] = Z e p(z).

zeX



2 Exercises

Exercise 1 (Properties of CDFs). We consider a random variable X with the
pmf p(z) distributed over the support X'.

1. Argue that lim Fx(z) = 0, your proof does not need to be rigorous.
T——00

2. Argue that h_}m Fx(x) = 1, your proof does not need to be rigorous.
T—00

3. Show that F'x (x) is non-decreasing in x.
Solution:

1. We are interested in the following limit

lim Fx(z)= lim P(X <ux).

T—r—00 T——00

If we could push the limit from outside the probability sign [P to inside,
we would get

lim P(X§$)2P< lim X§x>.

T—r—00 T—r—00

Now, note that the set lim {X < z} = {X < —oo} is the null set,
Tr——00

since X is a random variable that takes real values and so it must always
be greater than negative infinity.

Thus,

lim P(X <z)=P( lim X §x> =P(¢) =0.

T——00 ($—)—OO

The exchange of limits and probability can be justified by a property
called continuity of probability. However, we leave the details of this
to a more advanced class.

2. Along similar lines as part 1, we are interested in the following limit

lim Fx(z) = lim P(X <x).

T—00 T—00

If we could push the limit from outside the probability sign IP to inside,
we would get

lim IP’(XS:C):P( lim ng).

T—00 T—00



Now, note that the set li_>m {X <z} = {X < oo} is the entire sample
Tr—00

space S, since X is a random variable that takes real values and so it must
always be less than infinity.

Thus,
lim P(X <z)=P( lim XSH?) =P(S)=1.

T—00 < Tr—00
3. Consider two numbers z; and x5 such that x; < x5. Consider the follow-
ingsets A = {X < z1}and B = {X < x9}. Since 1 < x3, we know
that if event A occurs then event B must also occur. This is because event
A indicates that X is less than or equal to x1 but 7 is smaller than z2 so
X must also be smaller than xo, which is precisely event B. Thus, A is a
subset of B, or A C B. Now, we had shown in the previous recitation that
if A C B, then P(A) < P(B). Thus, given any values z and x2 such that
x1 < x2, we have shown that P(X < z1) < P(X < x9), or alternatively
Fx(z1) < Fx(x2). This shows that F'x(-) must be a non-decreasing
function.

Exercise 2 (Computing Expectations).

1. Consider a geometric random variable with parameter p. Show that its
expectation is 1/p.

2. Compute the expectation and variance of a Poisson random variable with
parameter \.

Note: We derive these results for completeness. In exams or homeworks,
you can directly use the expectation/variance formulas for any distribu-
tions we discuss in class.

Solution:

1. The pmf of a geometric random variable is given by

(]' - p)k_lpa Vn € N7

0, otherwise.

MX:@:{



So, its expectation is given by

EX] =Y kp(1—p)* ' ==p> di(l —p)*
k=1 k=1 p

_ w%(i(l —p)’“) = —PCZQ <1—1(I£p)>

k=1
d <1 1> 1 1
dp \ p P2 p

o0
We used the following identity above Y r* = £ V|r| < 1.
k=1

2. The Poisson pmf is given by
)\k67A
~5—,Vn €10,1,2,...},
P(X=k)=4{ K " {0.1,2,...}
0, otherwise.
So, its expectation is given by
o0

A=A S L
BIX) =2 b =2 G

The last inequality follows by substituting j = k£ — 1 in the summation
and observing that we are summing over the Poisson pmf again, so the
summation becomes 7% P(X = j) = 1.



Now, for the variance, we first compute the second moment

& )\ke—/\ OO )\ke—A

21 2 _
E(X*) = K= =D kg
k=1 k=1

& )\kfl -

0o je_)\ o]
A1) =AY (R =)
=0 I i=0
=AY P(X =)+ A jP(X = j) = AP(S) + AE[X]
7=0 Jj=0
=2+

Now, we can use the formula for variance in terms of the first and second
moment var(X) = E[X?] — (E[X])2 = (A + \2) — A2 = \.
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Continuous Random Variables: A random variable X is continuous if it takes
values over intervals of the real line, and has a function associated with it called
the probability density function, denoted by fx (-) that satisfies

b
P(X € [a,b]) = / fx(x)dx,Va,b.
The cdf of a continuous random variable can then be obtained as follows
Fx(z)=P(X <x) = / fx(z)dz.
—0o0

From the above, it is also easy to see that the pdf is the derivative of the cdf, i.e.

(@) = fx(@)

This relationship holds at all values of = where F'x (-) is differentiable.

PDFs: For any function f to be a probability density function, it must satisfy
the two conditions below:

1. f(z)>0,Vx

2. _70 f(x)dx = 1.

Support: The support of a continuous random variable, denoted by X, is the set
of values for which there is a positive density, i.e. fx(z) > 0.
Expectation: The expectation of a continuous random variable X is defined as

E[X] £ /e)( xfx(z)dx.

Higher moments, the variance and the moment generating function can be de-
fined similarly using the definitions for discrete random variables, all we need
to do is replace summations with integrals and the pmf with the pdf.

Common distributions: We list the densities for some common continuous
random variables below



1. Uniform on the interval [a, b], X ~ Unif([a,b]).

A ifzela
muﬁ—{“wf o0

0, otherwise.

2. Exponential with parameter A\, X ~ Exp()).

Xe M if x>0
fx (@) = {

0, otherwise.

3. Normal with mean y and variance 02, X ~ N (p, 02).

1 (e )2 /(202
fX(m):%e( w)?*/(20%)

2 Exercises

Exercise 1 (Transforming Random Variables). Consider a random variable U
distributed uniformly over the interval [0, 1]. Using this, we create a new random

variable
1

Y = .
1-U

What is the pdf and the cdf of Y'?
Solution: Note that the support of Y is the set [1, 00) and the cdf of U is given

by
0,ifx <0
Fy(x) =< z,Vo € [0,1]
1, ifzx > 1.
We will directly compute the cdf of Y.
1
F =PY <z)=P <
V(o) =P <) =P( i <o)
1
:1@( gm)
X
1
X
1
x
1
=1 5, Ve > 1



Using this, we can now compute the density of Y as well

2 Xz .
fy(x) _ {xs,v >1

0, otherwise.

Exercise 2 (Bayes’ Rule). Suppose that the number of turnovers in a Celtics
win is uniformly distributed over the set {7, ..., 15} and the number of turnovers
in a Celtics loss is uniformly distributed over {10, ..., 18}. The Celtics win prob-
ability this season is approximately 2/3. What is the probability that they win a
game given that they had 15 or more turnovers?

The numbers in this problem are made up but the Celtics do have a turnover
problem.
Solution: We are interested in the probability P(Win|15 or more turnovers). To
compute this, we can use Bayes’ rule

P(15 or more turnovers|Win)P(Win)
P(15 or more turnovers) ’

P(Win|15 or more turnovers) =

To compute P(15 or more turnovers) we can use the law of total probability.

P(15 or more turnovers) = P(15 or more turnovers|Win)P(Win)

+ (15 or more turnovers|Loss)P(Loss)

}Xg—k%xl
9 3 9 3
6

Putting these values back into the Bayes’ rule expression above, we get

P(Win|15 or more turnovers) = =

We see that the win probability drops from 2/3 to 1/3 if we know that the
number of turnovers is 15 or more.

Exercise 3 (Queuing and Memorylessness). People arrive into a queue at a
bank. The bank agent spends a random time addressing each person’s request.
These times are independent and exponentially distributed with a mean of 5
minutes.

Suppose you enter the queue, and observe 3 people waiting ahead of you. In
addition, there is also one person currently talking to the agent at his desk. The
people ahead of you tells you that this person has been talking to agent for at



least 6 minutes. What is the expected time until you will reach the bank agent’s
desk? Assume that the queue is first-come-first-serve.

Solution: Suppose X represents the time spent by person in front of you in
the queue, X for the person ahead of that and X3 for the person ahead of that.
Each of these is exponentially distributed. Let Y denote the time remaining for
the person who is currently at the agent’s desk. Then we are interested in the
quantity E[X; + X5 + X3 + Y. Using the memorylessness property, we know
that Y has the same distribution as if the person just arrived at the desk, i.e.
exponential with mean 5 minutes. Each of X, Xy and X3 is distributed in the
same way. So the total expected time until you reach the bank agent’s desk is
simply 4 x 5 = 20 minutes.

Exercise 4 (More Memorylessness). This problem is optional, the analysis
involved is not essential to understanding probability.

Show that the only probability density that satisfies memorylessness for all
positive real numbers is the exponential pdf. In other words, the only memory-
less continuous random variables on (0, co) are exponentially distributed.

You can derive a similar result for discrete random variables - the only mem-
oryless discrete random variables are geometric.

Solution: The memorylessness property states that the following must hold

P(X >s+t|X >t)=P(X > s),Vs,t > 0.

Suppose that X has a cdf represented by Fx(x). Further, let G(z) = P(X >
z) =1—-P(X < x) =1— Fx(x). Then, we can rewrite the memorylessness
condition as follows
P(X >s+tNX >t)
P(X >t)
P(X >s+1t)=P(X >t)P(X > s)
G(s+1t) =G(s)G(t).

=P(X >s),Vs,t > 0.

Setting s = t in the relationship above, we get G(2t) = G2(t),¥t > 0.
Then, setting s = 2t, we get G(3t) = G3(t),Vt > 0. Repeating this procedure
for any integer, we can get G(mt) = G™(t),Vt > 0,m € N. Setting t’ = tm,
we can also get G(t') = G™(t'/m),Vt' > 0,m € N. Alternatively, we get
GY™(t) = G(t/m),¥t > 0,m € N. Putting all of these together, for any
rational number m /n, we get that G(2t) = G™/™(t).

Now, note that any real number = can be written as the limit of a sequence
of rational numbers, so we get that G(xt) = G*(t) must hold for all positive
x and t. Setting ¢t = 1, we get G(x) = G%(1). Let G(1) = e~ since it’s



just a constant smaller than 1. Then, we get G(z) = e~ * or alternatively that
Fx(x) = 1—e**. Thus, X must be exponentially distributed for memoryless-
ness to hold.
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Given two random variables X, Y, their joint pdf is denoted by fx y (z,y) if
they are continuous, their joint pmf is denoted by px y (x, y) if they are discrete,
and their joint cdf is denoted by Fx y (z,y).

Marginals: To find marginal distributions from the joint, simply integrate or
sum over the other variable. For example,

Fx() = / ey (@ y)dy

px(z) = pxy(@,y).

zeD

Evaluating probabilities: Given some set A on R?, the probability that the pair
of random variables (X, Y") lies in this set is given by

P((X,Y) € 4) = /(  Frrte )y
x,y

This gives us an expression for the joint cdf as well

x i
Fay(z,y) =P(X <2,Y <y) = / / oy () dyda.

Independence: Two random variables X, Y are independent if their distribu-
tions factor as a product of their marginals, i.e. fxy(z,y) = fx(z)fy(y) or

pxy(z,y) = px(z)py (y) or Fxy (z,y) = Fx(z)Fy (y).
Expectations: To compute the expectation of a function of two random vari-
ables, use the following result

Eh(X,Y)] = /OO /00 h(z,y) fxy(z,y)dzdy.

Covariance and Correlation: Given two random variables X, Y, their covari-
ance is defined as

cou(X,Y) =E [(X — E[X])(Y — E[Y])] = E[XY] - E[X|E[Y].

1



Further, their correlation coefficient is defined as

cov(X,Y)
var(X)var(Y)

PXY =

2 Exercises

Exercise 1 (Tossing Coins). Suppose that we toss a coin 10 times, where the
coin ends up heads in each toss independently with probability p. Let X be a
random variable that denotes the number of heads in tosses 1-6. Let Y denote the
number of heads in tosses 4-10. What is the covariance and correlation between
X and Y?

Solution: Let Z; be a random variable that’s 1 if the ¢th coin toss ends up heads.
Then X =77 + ... + Z@ andY =24+ ... + ZlO-

First, we will compute the covariance

cov(X,Y) =E[XY] - E[X]E[Y]
6 10 6 10
—E" Y22 - B> ZES 7]
i=1 j=4 i=1 J=4
10
> (E[Zizj] — IE[ZZ-]E[ZJD
1j=4
0
cov(Z;, Zy)
4

I
.Ma

7

[y

I
-

[]=
I

o |l

J

cov(Z;, Z;)

I
W~

i

= 3var(Zy) = 3p(1 — p).

Exercise 2 (Sampling uniformly from 2D regions). Suppose we sample points
(X,Y) uniformly from the unit circle centered on the origin. What is the joint
distribution of X, Y?

Bonus: Find the marginal densities of X and Y, and use them to show that X
and 'Y are not independent.

Solution: We postulate that to sample points uniformly at random from the
circle, the joint density of (X, Y") should be some constant ¢ > 0 over the entire



region irrespective of the coordinates (x,y), i.e.

c, ifr? +9? <1
0, otherwise.

fxy(z,y) = {

Why do we call this density uniform over the unit disc? Suppose there is a subset
within the unit disc A;. Then the probability that we sample something from A;
is given by

P(X,Y) e A) = / cdxdy = c (Area of Ay).
(z,y)€AL

Thus, the probability only depends on the area of the subset, and not its shape
or location. Further, two subsets of equal area have equal probability of being
sampled from. Thus, this intuitively extends the notion of uniformity to regions
in two dimensions.

How do we find the constant c¢? All we need to do is ensure that the integral
of fx y over the disc equals 1.

z=1 py=v1-x2
/ / ¢ dxdy = c (Area of unit circle) = crr.
r=—1Jy=—+1—22

3 |

Setting this integral to 1, we get ¢ =
To compute the marginal pdf of X, we need to integrate out y

y:m 1
fx(a) = / Lay
Y=V T

2Vl —a?
T

, if 2| < 1.

By symmetry, we obtain that

21 —y2 |
fr(y) = a0 if [y < 1.
It is easy to verify that fx and fy are indeed valid densities since they integrate
to 1 over the interval [—1, 1].
Note that the product of the marginals equals

pe@ ) = YY) oy <y <1




Clearly, this does not equal the actual joint density

1
fxy(zy) ==, ife® +y* < 1.
s

In fact, they don’t even have the same support. So, X and Y are not independent.

Exercise 3 (Bounding Correlation). Consider two random variables X and Y.
Let their variances be var(X) = o2 and var(Y) = o2. Show that

var(X +Y) = var(X) +var(Y) + 2cov(X,Y).

Now, define two new random variables

X Y
Zl = — 4+ —
Or Oy
X Y
Zy= - =
or Oy

Show that var(Z;) = 2 4+ 2pxy and var(Zs) = 2 — 2pxy. Using these,

show that |pxy| < 1.
Solution: First, we show the variance identity:

var(X +Y) = E[(X +Y)?] - (E[X +Y])’
[X2+Y2+2XY] (E*[X] + E*[Y] + 2E[X]|E[Y])
E[X?] - E*[X] + E*[Y] - E*[Y] + 2(E[XY] - E[X]E[Y])
= var(X) + var(Y) + 2cov(X,Y).
Now, we can apply the identity to Z1. Using the facts that var(aX) = a?var(X)
and cov(aX,bY’) = abcov(X,Y), we get
var(Zy) = var(X/oy) +var(Y/oy) + 2cov(X /0., Y /oy)
=o/os+ 0, o, + 2001;(55_;}/)
=24 2pxy.
Repeating the analysis for Z5, we get
var(Zs) = var(X/oy) +var(=Y/oy) + 2cov(X /oy, =Y /oy)
= 02/0% + 02 /0% + zcovff;y‘y)
=2-2pxy.

Note that variances must always be non-negative. Since var(Z;) > 0, we get
that —1 < pxy. Since var(Zz) > 0, we get that pxy < 1. Putting the two
together, we get that —1 < pxy < 1 or alternatively that |pxy| < 1.

4
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1 Review

We look at linear combinations and sums of random variables. Let X1, Xo, ..., X,
be random variables with means 1, ..., 4, and variances O'%, ag, s a%. Then
the following identities hold

1.
E[a1X1 + .o+ an Xy, + b] =aip + ... + apptn +b

var(ai X1+ ... + apXy,) = Z Z a;ajcov(X;, Xj)

i=1 j=1
n

= Z aZo? +2 Z Z a;a;cov(X;, X5).
i=1 i j<i

Next, we look at sums of independent random variables. Let X1, ..., X,, be
independent random variables and let Z = X + ... + X,,.

1. If we have just two continuous random variables and Z = X; + X5, then
the pdf of Z is given by

f2(2) = / " e @) fx (s — 2)da

2. The mgf of Z satisfies

My(t) = HMXi(t).
=1

3. If X; are normally distributed, then Z is also normally distributed.

4. If X, are Poisson, then Z is also Poisson.



2 Exercises

Exercise 1 (Covariance of independent sums). Suppose X7, ..., X4 are inde-
pendent random variables. Let Y = X; +2X5 + 3X3andlet Z = X; — X9 +
X3 + X4. Compute cov(Y, Z) in terms of the variances of X7, ..., X4.

Bonus: Do you notice a pattern? Can you formulate a general result on the
covariance of linear combinations based on the analysis in this question?
Solution: Recall the distributive property of covariance

cov(aXy + bX2,Y) =acov(X1,Y) + bcov(Xa,Y).
We will use this property to compute covariance between Y and Z.

cov(Y, Z) = cov(X1,Z) + 2cov(X2, Z) + 3cov(X3, Z)
= cov(X1, X1) + 2cov(Xa, —X3) + 3cov( X3, X3)
= var(X1) — 2var(Xa) + 3var(X3s).

The second equality follows due to the fact that all terms of the form cov(X;, X)
where ¢ # j equal zero, since X; are independent.

Exercise 2 (Sampling from a circle, again!). Suppose we sample points (X, Y")
uniformly from the unit circle centered on the origin. Find the marginal densities
of X and Y and use them to show that X and Y are not independent.

Solution: Recall that to sample points uniformly at random from the circle, the
joint density of (X, Y") should be

1 0.2 2
it +y <1
fX,Y(J?’y)—{

0, otherwise.

To compute the marginal pdf of X, we need to integrate out y

fx(e) = / Lay
Y= VI T

B 2v1 — 22
T

Cif |z < 1.

By symmetry, we obtain that

24/1 — 92
7

fy(y) = if [yl < 1.

It is easy to verify that fx and fy are indeed valid densities since they integrate
to 1 over the interval [—1, 1].



Note that the product of the marginals equals

Fe@ ) = Y gy <y <1

Clearly, this does not equal the actual joint density

1
fxy(@y) ==, ifa® +y° < 1.
s

In fact, they don’t even have the same support. So, X and Y are not independent.

Exercise 3 (Markov Inequality). Suppose X is a continuous random variable
that takes only positive values. Show that P(X > a) < @,Va > 0. We
provide a step-by-step procedure to prove this result.

1. First, write down E[X] as an integral using the pdf of X, given by fx.

2. Then, split the integral into the sum of two parts, an integral from 0 to a
and an integral from a to infinity.

3. Lower bound E[X] by ignoring the first term in the sum.

4. Further lower bound the remaining term by the term aP(X > a). If you
can do that, then this completes the proof.

Solution: We will go through the recipe provided in the question.

B = [ afx(oyis
_ /OOO ofx(x)de
:/Oa:rfx(:v)d:r—l—/aooxfx(x)dx
z/aoo:cfx(x)dw
> /:O afx()de = a/aoo fx(@)dz = aP(X > a).

We have shown that E[X] > aP(X > a). Dividing by a, we get the required
result.



3 Overall Review

Things you should be comfortable with for the quiz

1.

2.

10.

Axioms of Probability

Basic set theory and counting (you don’t need to worry about the more
involved versions of counting we did in recitation 1)

. Events, sample spaces, notions of mutual exclusion and independence of

events

. Probability identities - conditional probability, Bayes’ rule, law of total

probability, etc.

Discrete random variables - taking expectations/variances, computing prob-
abilities, common distributions (we will provide standard distributions,
expectations and variances in the exam)

Continuous random variables - taking expectations/variances, computing
probabilities, common distributions (we will provide standard distribu-
tions, expectations and variances in the exam)

. Manipulating pmfs, pdfs and cdfs, transforming functions of random vari-

ables

. Basics of moment generating functions (you don’t need to worry about

evaluating very complicated integrals)
Joint distributions, covariances and correlations

Properties of sums of many random variables



